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ABSTRACT

This note provides a mathematical explanation for the superiority of
certain pivot criterion heuristics when using the Row-Column Sum Method to
solve transportation problems. In addition, new pivot criteria are developed
using this mathematical explanation which are shown to be computationally

superior to the previously best pivot criteria.
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1. INTRODUCTION

Camputational studies by Dennis (3], Srinivasan-Thampson [7], and Glover-
Karney-Klingman-Napier [4] have tested different pivot criterion heuristics
when using the Row-Column Sum Method [1] (often called the MODI methed [2]) to
solve both totally dense and nondense transportation problems. These studies
have found two of these heuristic procedures tc be uniformly best. One pur-
pose of this note is to provide a mathematical explanation for this camputa-
tionally derived result. Another purpose is to use this mathematical explanation
+5 derive other pivot criteria which exploit all of the advantages of the two
best pivot procedures in such a way that the search time to find the next
pivot will be smaller. Camputational comparisons are then provided in the
last section. The results of this study show the superiority of cne new cri-
terion to the previously best pivot criterion,

The studies [3,4,7] tested different pivot criteria which scan the rows
(origin nodes) of the transportation tableau one at a time until an improving
cell is found. One of the pivot criteria tested (called the row fi:st negative
rule [4]) pivots the first encountered improving cell into the basis. Another
criterion tested (called the modified row first negative rule [4]) scans the
rows until it encounters the first row that contains an improving cell, and then
selects the cell in this row which violates dual feasibility by the largest
amount. Both of these pivot criteria resume scanning from the point at which
they previously terminated. For instance, the row first negative rule begins
searching at the cell following the "come-in cell" of the previous pivot; the
modified first negative rule begins searching in the row following the row in
which the last pivot occurred. (An improved place to resume the search is

identified in Section 3.)
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The principal theoretical result of this note is the following: the
procedure of pitoting on improving cells associated with a given node until
no such cells are left "normally” yields the same basis regardless of the order
in which the pivots are made. This result is used to derive a piwvot criterion
that uses the "shortest route" (minimum number of pivots) to reach the indi-
cated basis. This result further provides a mathematical explanation of the
superiority of the modified first negative pivot criterion over the first

negative rule.

2. NOTATION AND PROBLEM STATEMENT

We write the transportation problem in the form:

Minimize M. = T Cod. (1)

o0 Ly 13743
jeN

JelN
Z X' i = b" jEIq - {1’2,-- .,n} (3)
jem 9 J

where I a; = I b..

ieM jeN I

Following standard terminology, the a; parameters are called supplies and
the bj parameters are called demands. We associate these supplies and demands
respectively with the rows and colums of an m x n transportation tableau whose
cells contain the "cost coefficients" Cij- In addition, the rows of the trans-
portation tableau are referred to as origin nodes and the columns as destination
nodes. The cell in row i and colum j of the transportatior tableau is referred
to as cell (i,j) aor arc (i,j). Lastly a set of min-1 cells is a basis if and
only if it forms a spanning tree for the mtn nodes associated with the problem

[1,2,6]. A cell (and its associated variable xij) is called basic if it is
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contained among those cells in the basis and is called nonbasic otherwise.

A basic solution is the unique assigmment of the values to the X
variables satisfying equations (2) and (3) that result once each nonbasic Xi3
has been s¢t equal to zero. If such a solution satisfies (4) for all of the

variables, then it is called primal feasible.

The dual problem to the transportation problem can be stated as:

Maximize I ajRj + ijj (5)
iaM jeN
subject to: Rj + Ky <ciy o ieM, jeN (6)

Corresponding to a particular basis of the primal problem is a set of
"row multipliers" R; and a set of "column multipliers" Kj (not unique) such
that the "updated cosi coefficient”" n ij ! defined by = i3 = cij-Ri-Kj, is zero
for all basic cells. A basic solution is dual feasible if in addition "ij >0
for all nonbasic variables X;5 (The multipliers R, and Kj on which the ;4
are based represent values assigned to the variables of the dual of the trans-
portation problem.) Given a basic primal feasible solution then cell (i,j)}
is called an improving cell if "3 < 0. By fundamental linear programming
theory, a basic pri:al feasible solution is optimal if no improving cells exist.

The approach used to solve the transportation prob.om in the Row-Column
Sum Method (1,2] is to start with a basic primal feasible solution and proceeds
to pivot improving cells into the basis maintainino primal feasibility until
no improving cells exist. An efficient way of storing and updating the basis
and associated multiplier values is contained in [5]. The camputational
studies [3,4,7] present camputational results using different ways of picking
the improving cell (pivot criteria) to enter the basis. The purpose of this
note is to explain the interrelationship of the pivot criteria tested in

[3,4,7], to develop new pivot criteria, and present camputational results



on all of these pivot criteria. i

3. MATHEMATICAL DEVELOPMENT

Given a basic primal feasil-le solution and associated multiplier values
such that cij-Ri-Kj=0 for each basic cell (i,j), consider the problem of finding
new (updated) multiplier values when cell (p,q) replaces cell (r,s) in the basis.
Since any basis for a transportation problem is a spanning tree [1,2,6] deleting

cell (r,s) fram the current basis splits the basis graph into two disjoint trees

il

Tr and Ts where Tr contains node r and o contains node s. Further the spanning

o el i

tree property of a basis implies that cell (p,q) will reconnect these disjoint
trees. However, the origin node p may be in ecither tree Tr or Ts. Thus we denote

the tree containing node p by Tp ard the tree containing node q by Tq, where one

SRl

of the trees Tp and Tq is Tr and the other is Ts. These observations lead to

the following Remark. (A similar result is given in [5].)

Remark 1
Updated (New) multiplier values Ri ard Kj may be determined by setting

K=K+ n for all j in T
J ] M q

R! =R, =g foralliinT

o i "pg q

R! =R, for all i in T

i i p
K]!=K. for all j in T 3
J P 1
Proof 1

The proof is based on the observation that it is possible to assigi new 3

values to multipliers Ry and Kj so that the multipliers associated with the
nodes in Tp are unaltered. It follows that the updated costs associated with cells ~ 3}
in T.Wwill likewise remain unaltered and consequently will retain the value

p
zero. To offset this, the origin multiplier values associated with origin nodes
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in Tq must all be altered by ~Tpg whereupon the destination multiplier values

in Tq must all he altered by "pq' The validity of these changes is verified by

noting that the updated cost associated with any basic cell (u,v) in Ty 48, o=
cuv-Rﬁ-lQ, = O™ (R\;"“pq) - (Kv"'"pq) = R K =0. In addition the updated
cost associated with cell (p,q) is zero since "I'Jq = gpq—RE‘)-Kémpq—Rp- (Kq"'"pq) =
qu'Rp"Q;‘ g~ 0. Thus the new multiplier values yield updated cost coefficients
which are equal to zero for all basic cells, as required.

This result implies that it is necessary to decrease the updated ~ast
coefficients on a change cf‘ basis step only for those cells leading fram origin
nodes in Tq to destination nodes in Tp. Further, the amount of the decrease in }
each of these updated costs is precisely g It is very easy to be led by these ‘

facts: to an erroneous conclusion. Specifically, it seems plausible to suppose {:

that a good place to resume the search for an improving cell would be among
the origin nodes in Tq. This is undeniably the case if the only improving cell
associated with the curreit basis is cell (p,q). Then, any improving cells that
exist after the clange of basis must be associated with origin nodes in Tq. Logically, |
then the modified row first negative pivot criterion, which was found to be "
computationally best among the criteria tested [3,4,7], should be improved by
changing its seurch criterion to begin with the origin nodes in Tq rather than
with the node p+l. However, the camputational results in Section 4 demonstrate
that this is not the case.
Coupling Remark 1 with further observations. however, does lead to a rule
which is superior to the best rule previously devised. By way of preliminary,
note that Remark 1 also implies that the updated cost of a cell emanating from
nole p is unaltered if its destination node is in 'I‘p. On the other hand, the
updated cost is increased by -"pq if the destination node is in Tq. An
immediate inference is that if the cells in a particular row of the transportation
tableau are scanned sequentially and if the improving cells in this row are

pivoted into the basis as they are encountered, this row will contain no im-

proving cells once all the cells in this row have been examined. Thus, since the row
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first negative rule performs this type of scanning and pivoting procedure, once

it has scanned a row, the row will contain no improving cells. An alternate
pivot criterion, which would obtain the same result and which would embody the
philosophical approach of the modified row first negative rule, is to scan a row

L e S A el ok b Tl SR et g

of the transportation tableau, simultaneously creating a list of all the improving -

PR e

cells in this row and finding the most negative of these improvinw cells, The
pivot criterion would then bring the most negative improving cell into the basis.

sl > it

It would then re-search the list, simultaneously culling out those cells whose

TR TENT

updated costs are now non-negative and finding the most negative updated cost. Once
the list has been exhausted, no improving cells exist in this row (due to the

N

monotonic property of the updated costs), and the search for an improving cell
should he resumed by searching the origins in the tree (Tq) associated with the i
destination node of the last arc (p,q) entering the basis. We shall call this E

pivot criterion the revised row first negative rule. If the search is resumed in 1

the row following the pivot, we shall call this pivot criterion the altered row 3
first negative rule. In Section 4 computational results are presented on these !

pivot criteria which demonstrate that the second of these is more efficient than §
any criteria previously tested.
We will now lay analytical groundwork to provide further explanation of
the observed empirical results, ard to pave the way for future analysis of other 4
choic: rules that may be devised. Our results also provide a mathematical explana-
tion of the earlier findings [3,4,7] that the modified row first negative rule is

g e L g e

superior to the row first negative rule. In particular, assume row p contains two ;
improving cells (p,q) and (p,t). Consider the problem of cGeciding which cell to
bring into the basis first if pivoting is to continue until neither of these cells .

are pivot eligible. Essentially this decision can be resolved by characterizing

the "basis equivalent paths" associated with these nonbasic cells. (By the "basis
equivalent path" of nonbasic cell (i,j), we mean the unique path of basic cells
(arcs) connecting node i to node j.)

There ar: two possibilities for the basis equivalent paths associated with
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cells (p,q) and (p,t). Namely, the paths may be disjoint (i.e., the paths have
no cells in commwn) or the paths may have same common cells. The following remarks
identify the relevant conclusions for each case. :

Remark 2
If the basis equivalent paths associated with (p,q) and (p,t) are disjoint,

the order in which the cells are considered is unimportant - i.e., considering them
in either order will result in the same amount of camputation and ultimetely yield
the same basis.
Proof:

Observe (without loss of generality) that pivoting cell (p,q) into the basis

3
]
9

7
b,
i

will not aiter the basis equivalent path associated with cell (p,t) since the cell

leaving the basis will lie in the basis equivalent path associated with cell (p,q) §
Further, the only variables X;5 whose values are alterad by this change of basis
are those associated with the cells in the basis equivalent path of cell (p,q) amd
Xpq* Thus, the flow values X; associated with cells in the basis equivalent path
of cell (p,t) are unaltered. Further tl2 updated cost associated with cell (p,t)
is unaltered since node t must lie in the same trez as node p (i.e., tch) ‘since

a path exists from node t to node p when the cell leaving the basis during this
change of basis operation is deleted. Therefore, cell (p,t) is still pivot
eligible and its basis equivalent path is unaltered; consequently the same pivots
will be performed regardless of the order in which cells (p,q) and (p,t) are
brought into the basis and regardless of the order in which the pivots occur,
Finally, the same basis will be attained after executing the two pivots (assumuing

nondegeneracy) .
It is interesting to note that the foregoing remark characterizes an instance

dasigning computer codes to exploit parallel processing camputers. The following
remark identifies the samewhat more camplex relationships that hold when the basis .

equivalent paths are not disjoint.
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Remark 3

Let cell {u,v) denote the cell leaving the basis if cell (p,q) is pivoted
into the basis first and let cell (r,s) denote the cell leaving the basis if
cell (p,t) is pivoted into the basis first. Let Fp denote the arcs simultaneously
in the basis equivalent paths of cells (p,q) and (p,t), let Ft denote the
arcs in the basi~ equivalent path of cell (p,t) that are not in Fp, and let Fq
denote th~ arcs in the basis equivalent path of cell (p,q) that are not in Fp.
Assume that = - <"pt and that the current solution is non-degenerate.

1) If the cells (u,v) and (r,s) are simultaneously in the basis eguivalent
paths of cells (p,q) amd (p,t) (i.e., (u,v), (r,s)er), then cells (u,v) and
r,s) are the same cell. Further, the most negative improving cell (p,q) should
be pivoted into the basit¢ first in order to minimize computational effort. If
the most negative cell is pivoted first then only one vivot will result; pi-
voting in the other order will result in making two pivots. In either case,
the final basis will be the same.

2) If (u,v)c o’ (r,s)eF,, then one pivot will result if cell (p,g) is
pivoted into the basis first. If (p,t) is pivoted into the basis first, then
two pivots will occur. Further, the bases will be different and the reduction
in the objective function value will be largest if (p,q) is pivoted first.

q
pivot order, and the same basis is obtained.

3) If (u,veF,, (r,s)er, then two pivots will result regardlcss of the

4) If (u,v) qu, (r,e.)el:‘t and there exists a cell (i,j)eF whose flow will
P
be decreased during the pivot such that xij < K i XKoo then two pivots will
result regardless of the pivot order. However, different bases will result and
the reduction in the objective function value will be largest if cell (p,q) is

pivoted first.
5) If (u,v) qu, (r,s)eFt and for all cells (i,j)eFp whose flow will be

Eidieath ey 2o it i) WWW'WW: v

e o




o -

decreased xij 2 X *X.gr then two pivots will b~ required regardless of the
pivot order and the same basis will be the result.

Proof:

The proof of this remark is a straightforward application of the type of
reasoning underlying the proofs of Remarks 1 and 2 but is quite lengthy and is
therefore amitted.

Remark 3 indicates that, if the most negative improving cell is not pivoted
into the basis first, then either extra computational effort may be required
to obtain the same basis or a different basis having a lower objective function
value may ultimately result. Further, in no case will pivoting on the less
negative improving cell result in either a better objective function value or

less camputational work; thus, Remark 3 provides a partial explanation of

-the superiority of the modified row first negative rule. Also this remark

reinforces the earlier arguments that the new pivot criteria are likely to be

superior to the row first negative rule. 1In particular, one can verify using

Remark 3 that successively pivoting on the most negative improving cells associated

with a node will yield a basis which has no improving cells in this row in the
fewest number of pivots; also this basis will have the most improved objective
function value. Notice that this statement does not imply that the altered or
revised row first negative rules are the best pivot criteria since it may not be
optimal to eliminate all improving cells in a row before proceeding to another
row. However, the camwputational results in the next section support the
hypothesis that ne of these pivot criterion heuristics is efficient.

4. COMPUTATIONAL RESULTS

In this section we present camputational results on the modified row first

negative rule (MRFN), the modified row first negative rule resuming the search

in the subtree Tq (MRFN—’I‘q) , the altered row first negative riule (ARFN), and

e Iﬁﬁs.
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the revised row first negative rule (RRFN). ior each of these pivot criteria,
total solution times in seconds and the numbe- of pivots are given in Table 1

for 150 transportation problams varying in pumoer of origins, destinations,

and admissible cells. In addition for the I\'lRFN—'l'q criterion, statistics are

given on the total number of rows considered while searciing subtree 'I‘q, ('I‘NRC-JI'q),
the total nurber of pivots made while searching subtree T . ('I‘NPM—Tq) and total
number of rows considered (TNRC) to find the optimal solution. Additional
statistics given on the ARFN and RREN rules are the total number of improving

cells put in the list (INIC) and the number of pivots made fram the improving

cells on tne list (NPML).

The transportation problems used in the study were randamly generated using
a uniform probability distribution. The total supply of each m X n trans-
portation was set equal to 1000 m and the supply and demand amounts were picked
using a uniform probability distribution. The cost coefficient of each
admissible cell was between 1 and 100. [For each problem size and number of
arcs, five problems were generated and solved using the MRFN pivot rule,
The problem with the median total solution time was then solved using the
other pivot criteria. These statistics obtained fram tlie median problems
are reported in Table 1.

The CDC 6600 at The University of Texas at Austin Computation Center was

used to solve the problems. Camputer jobs were executed during periods when

machine load was approximately the same. The transportation code used to solve

b
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the problems is the one reported in (4] and is 5-15 times faster than any widely ;

available transportation code. The row minimum start rule [ 4 ] was used to

find the starting solution for all pivot criteria. The code is written in

FORTRAN and was executed on the CDC 6600 using the RUN campiler.

The results presented in Table 1 indicate that the ARFN pivot criteria is i
consistently better (with respect to total time) than the previously found best
[3,4,7) pivot criterion, MRFN. This result is most interesting from a historical
viewpoint since the study by Srinivasan-Thampson [7] tested a pivot criterion

which resembles the ARFN rule except that it fails to exploit the monotonicity

property of the improving costs within a row. In particular, the critecion of

[7] introduced a variant of the modified row first negative rule whereby if
the last pivot was associated with a cell in row p, the search for an improving ]
cell was re-initiated at row p rather than starting at rcw p+l. Thus, this

criterion successively scanned row p and pivoted into the basis the most negative

The monotonic property of the improving cells implies that this J

improving cell.
criterion ultimately performs the same pivots as the ARFN rule, but does so with

a good deal of unnecessary effort. in particular, the criterion suifers two

major drawbacks: (1) every cell in row p is searched at each iteration to find

the most negative improving cell and (2) every cell in row p is searched once

when row p contains no improving cells. As a result, this pivot rule was found

to be inferior to the MRFN rule.

By contrast, the datz in Table 1 indicate that the ARFN pivot criterion
is the best among those tested with respect to total solution time. Interestingly,
the MRFN rule remrains the best with respect to total number of pivots, but the
length of time required for its execution makes it a second runner to the ARFN rule. §
On the other hand, the subtree search procedure of the RRFN rule, which might seem i

a highly plausible candidate for reducing the total number of pivots and total

[

solution time (as noted in the discussion following Remark 1), performed somewhat

less impressively than the MRFN and the ARFN rules.
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In fact, the subtree search substantialiy increased the number of pivots using
both the MRFN-Tq and RRFN rules i many cases., Consequently the RRFN rule
is the wuost from both standpoints and the ARFN rule emerges as the new most

efficient cri-erion for selecting pivot elements.
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